
www.elsevier.com/locate/ynimg

NeuroImage 21 (2004) 965–972
Voxel-based homogeneity probability maps of gray matter in groups:
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A subject of increasing importance in magnetic resonance imaging

(MRI) is the analysis of intersubject structural differences, particularly

when comparing groups of subjects with different conditions or

diagnoses. On the other hand, determining structural homogeneity

across subjects using voxel-based morphological (VBM) methods has

become even more important to investigators who test for group brain

activation using functional magnetic resonance images (fMRI) or

positron emission tomography (PET). In the absence of methods that

evaluate structural differences, one does not know how much reliability

to assign to the functional differences. Here, we describe a voxel-based

method for quantitatively assessing the homogeneity of tissues from

structural magnetic resonance images of groups. Specifically, this

method determines the homogeneity of gray matter for a group of

subjects. Homogeneity probability maps (HPMs) of a given tissue type

(e.g., gray matter) are generated by using a confidence interval based on

binomial distribution. Thesemaps indicate for each voxel the probability

that the tissue type is gray for the population being studied. Therefore,

HPMs can accompany functional analyses to indicate the confidence one

can assign to functional difference at any given voxel. In this paper,

examples of HPMs generated for a group of control subjects are shown

and discussed. The application of this method to functional analysis is

demonstrated.
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Introduction

In analyzing functional and structural differences among

groups, two factors may contribute to misleading conclusions:

(1) inherent constraints and limitations of existing algorithms to

determine the optimal transformation matrix for realigning or

registering images; and (2) intersubject variability in size and
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shape of brain structures and location of activations. Aside from

the resolution of image acquisition systems and the magnetic field

inhomogeneity, two components contribute to misregistration: (1)

inherent limitations of, commonly utilized, rigid body transforma-

tions; and (2) underestimated activation due to partial voluming

effects on smaller areas of activation or overestimated activation

due to blurring of larger areas. As a result, the analyses of

functional data fail to indicate whether observed differences in

activations are solely due to functional variability or a combination

of structural and functional differences. Although random error is

of additional concern as a source of misinterpreting the functional

data, it will not be discussed in this paper. In the latter case, the

correlated noise results in a displacement of the peak activation so

that the observed location only lies in some confidence region of

the ‘‘true location’’ (Ma et al., 1999).

Nonlinear registration

One remedy for the misregistration is to realign and register

images by nonlinear warping to a standard volume, for example,

atlas or reference image. However, this approach may in fact

compound the above-mentioned problem by making the structural

and functional attributes inseparable. This happens because struc-

tural warping forces images into a reference volume and then the

functional data are accordingly resampled and interpolated to fit

the warped cortex resulting in an adverse effect that further

complicates the analysis of functional data by making separation

of structural and functional differences impossible. It is also

unlikely that any existing warping method can actually align

cytoarchitectural regions (Roland et al., 1997). Therefore, there is

a possibility of substantial inaccuracy in aligned voxels.

Partial voluming

Another problem, partial voluming, is caused by limitations

on magnetic resonance imaging (MRI) resolution and may be

more pronounced in studies where brain atrophy is present.

Therefore, it might commonly occur in studies focusing on

aging, alcoholism, and degenerative disease such as Alzheim-

er’s. The effect of partial voluming, resulting from brain atrophy

in subjects with Alzheimer’s disease, on brain glucose metabolic

rates measured by positron emission tomography (PET) has



Fig. 1. Orthogonal views of the summation image for 11 subjects of a

control group.

Fig. 2. A sample of the map of estimated probability p̂ of similar tissue type

(gray matter).
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been examined (Ibanez et al., 1998), and various methods have

been suggested for correcting these effects to obtain a better

estimate of regional CBF and metabolism (Iida et al., 2000;

Muller-Gartner et al., 1992). However, these corrections do not

distinguish the effects due to functional differences from those

due to structural differences.

It is a common practice that blurring (or spatial smoothing)

is applied to the images as a method of compensating for

activation localization inaccuracy. This method—in case of gray

matter nonhomogeneity and in regions of partial voluming—can

make the matter worse because larger numbers of nongray

matter voxels may contribute to the observed ‘‘activation’’ value

at each voxel.

Among the various methods for examining the relationship

between structural and functional images, voxel-based mor-

phometry (VBM) methods provide the most suitable option

because they do not rely upon human inspection of difference

images. Several investigators have proposed and developed

VBM methods for the voxel-wise comparison of gray matter

images from different groups of subjects (Ashburner and Fris-

ton, 2000). These methods utilize nonlinear warping of images

and the Gaussian random field approach for group comparison.

It should be noted that various nonlinear registration methods

and voxel-based methods will have different degrees of regional,

anatomical, and tissue compositional accuracy depending on the

landmarks that they use for optimization of registration or

comparison of voxels (Salmond et al., 2002).

Intersubject variability

Intersubject variability in the location of activation poses a

more complex problem. This problem arises because even in

subjects with optimally matched structures, the actual site of

activation for a given stimulus or behavior may differ. Therefore,

even nonlinear warping cannot guarantee separation of functional

and structural differences in the case of variability in activation
sites between subjects in a group. Other investigators (Salmond et

al., 2002) have shared this concern by stating that even if

anatomical differences were removed by exact registration or

normalization it may artificially alter the tissue composition of

the images and hence fail to prevent matching dissimilar anatomies

based on the tissue intensity.

Another possible approach to addressing localization while

avoiding nonlinear transformations involves utilization of shape

descriptors—curvature(s), length, height, thickness, etc. followed

by comparison of corresponding regions or structures. However, this

approach encounters a major problem: for each region or structure,

there must be enough descriptors to allow unique identification of

such region or structure. This is not only at times computationally

costly but may also not be possible to identify these descriptors

(particularly for small structures). Because some of these descriptors

are not currently automated, they therefore require tedious manual

processing of the images vulnerable to operator variability.

In this paper, we propose a voxel-based method to generate

homogeneity probability maps (HPMs) within groups. This method

allows structural comparison of the cortical surface and gray matter,
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in general, regardless of the type of registration and segmentation

methods used. We utilize this method not as a correction mechanism

for variation in the activation sites but rather as a complementary

tool for evaluating the structural reliability of functional differences.
Fig. 4. Plot providing a 95% confidence interval for p in binomial sampling

as a function of S(i,j,k) and number of subjects n.
Method

The objective of our method is to address registration limi-

tations and partial voluming effects by localizing regional or

structural homogeneity (and by contrast, heterogeneity) for any

given tissue type (e.g., gray matter or white matter). In the case of

functional images, we provide homogeneity maps of gray matter

over the entire brain as an index of reliability that the observed

functional differences are actually due to functional rather than

structural differences. In the following sections we describe this

method, which includes image registration, image segmentation,

generation of a density volume, and finally generation of homo-

geneity probability map (HPM) for a group of subjects.

Image realignment or registration and segmentation

All images are first coregistered to a standard (e.g., Talairach)

volume. The individual registered images are then segmented into

various tissue types (e.g., CSF, gray matter, and white matter). The

segmentation allows investigators to avoid influence of intensity

variations in the images due to differences in acquisition param-

eters. Clearly, both registration and segmentation algorithms affect

the outcome of this method as they do in all analyses. In this paper,

we utilize analysis of functional neural images (AFNI) (Cox, 1996)

software for realignment or registration along with an intensity

based (Momenan et al., 1997) algorithm for segmentation.

Density volume

A binary mask Bm of gray matter is then generated from the

segmented volume of each brain:

Bmði; j; kÞ ¼
1 pixelogray matter

0 otherwise

8<
: ð1Þ

where Bm(i,j,k) is a binary value in each volume, m, in the group at

voxel location i,j,k. In this fashion, a voxel which has any amount
Fig. 3. The lower (a) and upper (b) confidence limits fo
of gray matter will be assigned the value 1. Otherwise, the voxel

will be assigned the value 0. As a result, we create a binary image

of the gray matter in the brain and treat the resulting data in

binomial mode.

In the proposed method, we use addition instead of subtrac-

tion to compare cortical regions. To do this, registered binary

images of gray matter are summed together for all corresponding

voxels. This avoids effects that are encountered with subtraction

methods (Fox and Freeborough, 1997) (i.e., having to deal with

both positive and negative values). As a result, a single density

volume S is generated (Fig. 1) in which the voxel where the

gray matter in each volume overlaps with the others has a

higher intensity than those voxels with fewer overlapping gray

matter. Therefore, the density volume is computed and generated

from:

Sði; j; kÞ ¼
Xn
m¼1

Wi;j;k � Bmði; j; kÞ ð2Þ

where S(i,j,k) is the corresponding voxel in the density volume at

voxel i,j,k and wi,j,k is the weighting factor between 0 and 1 at each

voxel. The weighting factor is determined by the segmentation

algorithm. wi,j,k is zero for voxels with no gray matter and equal to

1 if the voxel is determined to be 100% gray matter. In a determin-

istic segmentation method (Momenan et al., 1997), wi,j,k is always

equal to 1 because the binary imageBm(i,j,k) only represents the gray

matter. In a probabilistic segmentation method, wi,j,k is equal to the
r the group based on a 95% confidence interval.
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value of the proportion of the voxel that is determined to be gray

matter. Therefore, the value of each density voxel ranges from zero

(no graymatter in all subjects) to n (100% graymatter in all subjects)

for a given voxel.

Homogeneity probability map (HPM)

The next step is to generate a homogeneity probability map

(HPM) of the group. The HPM indicates the probability that each

voxel in every subject of the group belongs to a given tissue type

(in this case gray matter; see Fig. 2).

To this end, the estimated probability of a given voxel in the

group being gray matter is computed by:

p̂ði; j; kÞ ¼ Sði; j; kÞ
n

ð3Þ

where n is the number of subjects in the group.

We can then compute the approximate confidence interval for the

probability of any given voxel being gray matter for the entire group

from (Goodall, 1995):

p̂� Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
< p < p̂þ Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
ð4Þ

where a is the chosen significance level, Za/2 denotes the N(0,1) at

that level, and p is the true probability of a given voxel being

composed of the desired tissue type. Note that this is only one of
Fig. 5. The lower homogeneity probability map for (a) 11 control subjects with

activation overlaid on the HPMs; (b) the magnified region of activation overlaid

incentive anticipation tasks of the control subjects.
several methods of approximating a confidence interval. Other

methods can provide more accurate confidence intervals for small

sample sizes (Johnson and Kotz, 1969).

The actual probability of any given voxel being gray matter

lies somewhere between the lower and upper limits of this

interval (Fig. 3). We chose the 95% confidence interval for our

analysis.

Fig. 3a shows the lower (or conservative) confidence limit. As a

result, fewer voxels have high probability of being gray matter.

However, the upper (or liberal) confidence limit shown in Fig. 3b

indicates more homogenous voxels. Note that the lower and upper

limits approach convergence as: (1) the structural (and tissue type)

variability among subjects decreases (S(i,j,k)!n); and more impor-

tantly as (2) n, the number of subjects, increases (Fig. 4).

Subjects and scans

Twelve physically and psychiatrically healthy normal volunteers

(six women and six men; right handed; mean age: 31) participated in

a previously described (Knutson et al., 2003) parametric monetary

incentive delay (MID) task in which they pressed a button to either

gain or avoid losing monetary incentives of varying amounts

(US$5.00, US$1.00, US$0.20, US$0.00).

During the task, 432 T2*-weighted echo-planar MR volumes

(TR = 2 s, TE = 40 s, flip angle = 90j) were acquired with 22

sagittal slices (3.752 � 3.8 mm) centered on the intrahemispheric

fissure using a 1.5-T magnet.
the color bar showing percent probability with the boundary of functional

on HPM; (c) the corresponding z-scores from the functional analysis for
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The full-brain high resolution coronal structural volume was

collected using T1-weighted spoiled grass sequence (TR = 100 ms,

TE = 7 ms, flip angle = 90j) of 256 � 256 � 124 matrix with voxel

size of 0.9375 � 0.9375 � 2.0 mm3. All volumes were Talairach

registered using AFNI (Cox, 1996) resulting in isotropic volumes

with 161 � 151 � 191 matrix of 1 � 1 � 1 mm3 voxels. Only 11 of

the above-mentioned normal subjects (six females) were used for

this voxel-based analysis to match 11 segmented images available at

the time of this publication.
Results

Structural analysis

In the present analyses we selected the lower limit of the

confidence interval to be conservative. As shown in coronal

views of Fig. 3, in the cortex, where variability is most

expected, the homogeneity probability is smaller. On the other

hand, subcortical nuclei show greater homogeneity. The homo-

geneities along Anterior Commissure (AC), Posterior Commis-

sure (PC), midsagittal cortical surface, striatum, and thalamus are

also large (Figs. 5a and 6a and HPMs of control subjects,

respectively).

Accordingly, as indicated in Figs. 5a and 6a, the areas of high

confidence (lower confidence limit above 70%) in these groups
Fig. 6. The lower homogeneity probability map for (a) 11 control subjects with

activation overlaid on the HPMs; (b) the magnified region of activation overlaid

incentive feedback vs. baseline of the control subjects.
include both subcortical and cortical regions. Cortical regions

included some of functionally relevant structures such as mesial

prefrontal cortex, as well as other cortical areas spanning from the

temporal lobe to the genu of the corpus callosum. Subcortical

regions included the insula (left: �39, 7, 9; right: 39, 7, 9),

hippocampus (left: �30, 24, �9; right: 30, 24, �9), caudate (left:

�11, �7, 9; right: 11, �7, 9), thalamus (left: �12, 19, 8; right: 12,

19, 8), amygdale (left: �20, �4, �19; right: 20, �4, 19), para-

hippocampal gyrus (left: 26,�20,�10; right:�26,�20,�10), and

fusiform gyri (left: �40, 48, �16; right: 40, 48, �16).

In contrast, the cortical regions in the parietal and occipital

lobes (with the exception of V1 in the visual cortex) did not

warrant high levels of confidence. Neither did the dorsolateral and

orbitofrontal cortices in the frontal lobe. Subcortical structures such

as the putamen (left: �24, 0, 3; right: 24, 0, 3) and globus pallidus

(left: �17, 4, �2; right: 17, 4, �2) also elicited lower confidence.

Also note that in both conservative and optimistic limits of the

images shown in Fig. 3—as expected—the homogeneity near the

intersection of cortical surfaces with cerebrospinal fluid and white

matter is low.

Functional analysis reliability check

One motivation for developing this approach is to deter-

mine which functional differences may derive from structural

inhomogeneities. Therefore, we propose the utilization of
the color bar showing percent probability with the boundary of functional

on HPM; (c) the corresponding z-scores from the functional analysis for
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homogeneity probability maps (HPMs) as a supplementary

index of the reliability of functional differences. It is important

to note that HPMs do not correct or evaluate the method

selected for functional analysis, but rather, evaluate how

reliably the functional differences reflect functional rather than

structural differences.

Functional analysis

Functional analyses focused on changes in blood oxygen

level-dependent (BOLD) contrast that occurred as subjects

anticipated gaining or losing money, and received feedback

indicating that they had gained or lost money. The experiment

was set up and analyses were performed as described by

Knutson et al. (2003) as follows.

All analyses were conducted using AFNI (Cox, 1996). For

preprocessing, voxel time series were interpolated to correct for

nonsimultaneous slice acquisition within each volume (using sinc

interpolation and the rightmost slice as a reference), concatenated

across both task sessions, and then corrected for three-dimensional

motion (using the third volume of the first session as a reference).

Motion correction estimates were then visually inspected to confirm

that no participant’s head moved more than 1.5 mm in any

dimension from one volume acquisition to the next.

Preprocessed time series data for each individual were first

analyzed with multiple regression (Neter et al., 1996) to allow

covariance of ‘‘nuisance’’ variables related to head motion and

scanning session in modeling trials of interest. Both anticipation

and outcome stages were modeled for each trial type and convolved

with a gamma-variate function to model a prototypical hemody-

namic response before inclusion in the regression model (Cohen,

1997). Resulting functional maps were coregistered with structural

maps, spatially normalized by rigid body transformation to Talair-
Table 1

Group maximum Z-scores and Talairach coordinates of activation foci ( P < 0.00

Area (Brodmann’s area) Anticipation: potential

gain vs. no outcome

Outcome:

Max Z TC (R,A,S) Max Z

R. Ant. Insula (13) 4.30 36, 14, 1

L. Ant. Insula (13)

R. NAcc 4.89 11, 12, 0

L. NAcc 5.11 �9, 10, 0

R. Caudate 5.76 10, 9, 4

L. Caudate 6.42 �8, 1, 7

R. Putamen

L. Putamen

Thalamus 4.86 �3,�13, 13

R. Amygdala

L. Amygdala

Mes. Prefrontal Ctx (10/32) 4.45

Frontal Pole (10) 4.33

Ant. Cingulate (24)

Post. Cingulate (26/30) 4.03

Parietal Ctx (7) 3.91

Mes. Prefrontal Ctx (32) 4.51 3, 27, 35

Sup. Motor Area (6) 3.96 0,�4, 49

L. Motor Ctx. (4) 4.94 �28,�55, 42

Cerebellar Vermisa 4.67 0,�70,�26

Boldface indicates foci that were used to construct volumes-of-interest. TC = Tal
a The gray matter and white matter segmentations for cerebellar areas were not a
ach space, and slightly spatially smoothed (FWHM = 4 mm) to

account for anatomical variability. Using a random-effects type

analysis, orthogonal general linear tests were then conducted to

compare conditions of interest for all subjects as a group. T-statistic

maps were then converted to Z-scores, spatially blurred (FWHM =

4 mm), and normalized. Active voxels were defined as those

showing a significant effect using a threshold of P < 0.00001,

uncorrected, or P < 0.05, corrected. Comparisons of interest

included: (1) anticipation of monetary gain vs. anticipation of no

monetary outcome; (2) anticipation of monetary loss vs. anticipa-

tion no monetary outcome; (3) ‘‘hit’’ vs. ‘‘miss’’ outcomes on

potential gain trials; and (4) ‘‘hit’’ vs. ‘‘miss’’ outcomes on potential

loss trials. Table 1 shows the group maximum Z scores and

Talairach coordinates of activation foci as described by Knutson

et al. (2003). Note that two (rightmost) columns are added that

indicate the minimum and maximum probabilities, respectively, of

the center of each focus being gray matter. Hence, the table provides

an estimate of how reliably the Z scores results from functional

activation rather than structural differences.

Figs. 5a and 6a show the homogeneity probability maps

(HPMs) for healthy volunteer functional maps shown in two

separate functional magnetic resonance imaging (fMRI) analyses

of Figs. 5c and 6c (Knutson et al., 2003), respectively. For

clarity of comparison, the blue outlines overlaid in Figs. 5a and

6a indicate the boundary of activation regions and Figs. 5b and

6b are their magnified copies, respectively. As shown in Figs.

5b and 6b, the activation regions largely overlap with the high

HPMs, but may have subregions of activations that have low

HPMs. Table 1 shows the HPM confidence limits for the focal

or peak point of the above-mentioned analyses. In Table 1, the

focal point of 12 out of 20 regions has low HPMs. However, if

the HPM method had been available then the 12 low HPM

points would not have been selected as the focal point of
01, uncorrected; n = 12)

gain vs. no outcome Confidence limits for 0.95 confidence interval

TC (R,A,S) Lower limit Upper limit

0.59 1.00

0.46 1.00

0.35 0.92

0.59 1.00

0.16 0.75

0.00 0.65

0.35 0.92

0.00 0.26

1.00 1.00

0.74 1.00

1.00 1.00

1, 53�6 0.59 1.00

2, 65, 7 0.00 0.41

0.00 0.54

5, �51, 22 0.25 0.84

4, �62, 53 0.25 0.84

0.59 1.00

0.35 0.92

0.46 0.99

– –

airach coordinates, R = right, A = anterior, S = superior.

vailable.
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activation. From Figs. 5b and 6b, it is clear that there are

alternative points in these regions of activation with high

HPMs. Therefore, the maximum activations among these high

HPMs should be chosen. In this sense, these results confirm the

functional analysis of anticipation (Fig. 5c) and feedback (Fig.

6c) as demonstrating functional activation at the foci, but

caution against considering the activation foci on the edges of

gray matter structures. These results demonstrate the usefulness

of homogeneity probability map of gray matter by identifying

the heterogeneity of activation areas (e.g., edges, shell vs. core

of structure) and, therefore, helping investigators avoid confus-

ing structural variations with functional differences.
Conclusion

We have described a voxel-based method for generating

homogeneity probability maps (HPMs) to evaluate the homoge-

neity of tissues and for indexing structural differences within

groups. We have demonstrated that this method can also be used

to supplement functional data analysis, indicating the structural

or tissue homogeneity of the areas of significant functional

activations.

In this method, a confidence interval—as opposed to a specific

measure—of homogeneity of each voxel is provided. To be conser-

vative, we have chosen the lower limit as the index of reliability. This

measure should be used as an index of how much the normalization

and segmentation steps as well as the partial voluming and inter-

subject variability cumulatively affect the homogeneity of a given

voxel within a group.

We emphasize that this complementary method can be used

regardless of registration, segmentation, and normalization methods

that are applied before functional data analysis. HPMs are not

intended as a method for evaluating the performance of the afore-

mentioned methods, but are an indicator of tissue homogeneity.

Unlike other similar methods, this technique does not introduce

any inherent shortcomings of its own to within and between groups

comparisons. The method does, however, inherit two confounding

parameters. First, the rigid body registration must adequately

match group images into the reference volume. Second, the

segmentation program must perform adequately. However, any

problems with registration and segmentation arise before imple-

mentation of the suggested HPM method. Thus, the proposed

method describes the analytical reliability, but not adequacy.

Therefore, as the registration and segmentation performance in

terms of accuracy and performance are increased, the HPM’s

would similarly be more precise.

As for greater homogeneity along the AC–PC line and the

midsagittal surface, most programs such as AFNI require that these

landmarks be identified. This may contribute to better registration of

images along the AC–PC line and the midsagittal slice. Therefore,

notwithstanding inherent variability among subjects, there is still a

good intersubject structural or tissue homogeneity in the striatum

and thalamus. Another contributing factor may be the increased

homogeneity of the center of the magnetic field.

Using the HPM method, one can also use the areas of high

concentration of gray matter as a mask for functional analysis,

hence increasing the power of analysis by reducing the number of

statistical tests (as opposed to testing the whole brain or an entire

gray matter volume). This will also result in computationally less

expensive processes because fewer voxels will be tested.
This method also confirms inherent advantages of single-

subject analyses. Specifically, the findings suggest that in single

group analyses, investigators should confine their analyses to

overlapping regions of similar tissue type. This could result in

smaller regions of detected activation. Therefore, whole brain may

only be possible in single-subject analyses.

Two caveats are in order regarding the HPM method. First,

although it is likely that in the regions of greater gray matter

homogeneity the statistical differences derive from functional

activations in the group, the reverse is not necessarily true.

Specifically, in regions of low gray matter homogeneity, one

cannot determine that the source of a statistical difference is due

to structural differences, functional differences, or both. Second,

investigators must choose the minimum acceptable probability

threshold for the HPMs of gray matter to accept or reject a

functional map of the corresponding regions.

It should be noted that like other existing methods, intersubject

variability of the location of functional activation cannot be

addressed by the HPM method proposed in this paper.

As a natural extension of group HPMs, a work in progress

involves generating between-group HPMs for assessing the be-

tween-group functional differences. In this case, there can be

additional homogeneity problems beyond the within-group analy-

sis that should be tested to generate between-group HPMs.

Future work will also include improvement of the methods for

calculating the confidence intervals as well as investigating the

expansion of the HPM method so that a ‘‘correction factor’’ or

‘‘correction covariate’’ can be determined and directly applied to

functional data analysis.
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